

RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN

Nucla Station Ash Disposal Facility

Submitted To: Tri-State Generation and Transmission P.O. Box 33695 Denver, Colorado 80233

Submitted By: Golder Associates Inc. 44 Union Boulevard, Suite 300 Lakewood, Colorado 80228

October 2016

1657746

Table of Contents

1.0	INTRODUCTION	. 1
2.0	REGULATORY REQUIREMENTS	. 1
3.0	DESIGN METHODOLOGY	. 1
3.1	Design Storm	. 1
3.2	Rainfall Abstractions	. 1
3.3	Routing Methodology	. 2
4.0	RUN-ON CONTROL PLAN	. 2
5.0	RUN-OFF CONTROL PLAN	. 3
5.1	Active Portion of the Facility	. 3
5.2	Closed Portion of the Facility	. 3
6.0	CLOSING	. 4

List of Figures

Figure 1	Run-on and Run-off	Control System -	Existing Conditions
0		2	0

List of Appendices

Appendix A	Stormwater Run-off and Run-on Calculations – Active Portion
Appondix B	Stormwater Pup off Calculations Closure Conditions

Appendix B Stormwater Run-off Calculations – Closure Conditions

1.0 INTRODUCTION

This run-on and run-off control system (ROROCS) plan has been prepared by Golder Associates Inc. (Golder) on behalf of Tri-State Generation and Transmission Association, Inc. (Tri-State) for the Nucla Station Ash Disposal Facility (the Facility), which is located in Montrose County, Colorado. This ROROCS plan documents the Facility's run-on and run-off control system design and its compliance with the requirements of 40 CFR 257.81, including appropriate engineering calculations. This ROROCS plan is included in the Facility's operating record as required under 40 CFR 257.105(g)(3).

2.0 REGULATORY REQUIREMENTS

As required under 40 CFR 257.81, the owner or operator of a coal combustion residuals (CCR) landfill must design, construct, operate, and maintain a run-on and run-off control system to appropriately manage surface water generated from a 25-year, 24-hour storm event. This includes the following:

- A run-on control system to prevent flow onto the active portion of the CCR landfill during the peak discharge from a 25-year, 24-hour storm event.
- A run-off control system from the active portion of the CCR landfill to collect and control the water volume resulting from the 25-year, 24-hour storm event.

In the context of the CCR Rule, "active portion" refers to constructed areas of a CCR landfill within the limit of waste on which a final cover system has not been constructed. The limit of waste for the Facility encompasses approximately 61 acres. Currently, an area of the sideslopes totaling approximately 22 acres has received final cover and an area totaling approximately 17 acres on the top surface of the northern half of the Facility has received final cover. These areas are shown on Figure 1.

3.0 DESIGN METHODOLOGY

3.1 Design Storm

The Facility's run-on and run-off control system is designed for hydraulic capacity to manage at least the 25-year, 24-hour storm event. A site-specific precipitation estimate corresponding to the design event was obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 at the Facility location. The 25-year, 24-hour storm event generates 2.11 inches of precipitation at the Facility. Design calculations utilizing this design storm or larger are included in Appendices A and B.

3.2 Rainfall Abstractions

Rainfall abstractions are water losses that occur before run-off begins. Losses may consist of infiltration, depression storage, and other factors. Rainfall abstractions can be estimated using the Soil Conservation Service (SCS) Method as presented in the following series of equations:

October 2016	2		1657746
$S = \frac{1000}{CN} - 10$		[Equation 1]	
Ia = 0.2S		[Equation 2]	
Therefore:			
$Ia = \frac{200}{CN} - 2$		[Equation 3]	
Where: S = potential maximum retention after run-off begins (i	in)		

CN = curve number

Ia = initial abstraction (in)

The initial abstraction is a function of the land use conditions as represented by the composite curve number for the tributary drainage area.

3.3 Routing Methodology

Stormwater calculations were performed using computer software (HEC-HMS) that employs the SCS Method to estimate run-on and run-off volumes. The routing methodology is described for the various engineering calculations in Appendices A and B.

4.0 RUN-ON CONTROL PLAN

Run-on is stormwater that may route towards the active portion of the Facility. Based on a review of the topography surrounding the Nucla Station Ash Disposal Facility, as shown on Figure 1, run-on only has the potential to enter the active portion from the northeast. A perimeter channel system has been constructed to intercept run-on and prevent flow onto the active portion. Based on topographic information and site observations, the minimum perimeter channel section is 2 feet deep with no bottom width and 3 (horizontal) to 1 (vertical) sideslopes. The perimeter channels are grass-lined or riprap-lined. The perimeter channel system is capable of conveying run-on from the 25-year, 24-hour storm event, as well as run-off from the landfill sideslopes for the same storm event, as demonstrated by the engineering calculations in Appendix A.

The calculations in Appendix A were carried out based on existing topographic conditions, which reflect the highest contributing area for run-on. As fill sequencing progresses and the Facility height increases, the contributing area for run-on that could route onto to the active portion will decrease and eventually be eliminated. Therefore, the existing condition represents the maximum run-on condition for the remaining life of the Facility.

5.0 RUN-OFF CONTROL PLAN

5.1 Active Portion of the Facility

Run-off from the active portion of the Facility (and other contributing areas) is contained within the ash placement area by a containment berm maintained around its perimeter. The containment berm has a minimum height of 2 feet. The depth of water resulting from the design storm across the active portion (and other contributing areas) is controlled behind the containment berm with ample freeboard, as demonstrated by the engineering calculations in Appendix A.

The calculations in Appendix A were carried out based on existing topographic conditions, which reflect the highest contributing area for run-off. As fill sequencing progresses and the Facility height increases, the contributing area for run-off will decrease. Therefore, the existing condition represents the maximum run-off condition for the remaining life of the Facility.

5.2 Closed Portion of the Facility

During operation, the exterior sideslopes of the Facility are raised gradually as needed to contain the volume of CCRs being generated. The landfill height is increased through the use of earthen containment berms that are periodically constructed around the perimeter of the landfill in areas of active filling. Each individual containment berm, typically about five feet in height, is constructed atop and slightly inside ("upstream") of the previous (underlying) containment berm (i.e., closer to the center of the landfill) to cumulatively form the landfill sideslopes. At approximate 20-foot vertical intervals, the containment berms are inwardly offset an additional 10 feet to establish benches with terrace channels for run-off control. Terrace channels convey run-off to riprap-lined rundown channels (i.e., downchutes) and into the perimeter channel system described in Section 4.0. The terrace channels, rundown channels, and perimeter channel system are capable of conveying run-off from the 100-year, 24-hour storm event, as demonstrated by the engineering calculations in Appendix B.

The calculations in Appendix B were carried out based on topographic conditions after a possible 20-foothigh vertical expansion above the currently permitted grades. This possible future condition represents the maximum run-off condition for the remaining life of the Facility.

1657746

6.0 CLOSING

As required under 40 CFR 257.81, the run-on and run-off control system for the Nucla Station Ash Disposal Facility is designed to prevent flow onto the active portion of the CCR landfill during the peak discharge from a 25-year, 24-hour storm and to collect and control the water volume resulting from a 25-year, 24-hour storm.

GOLDER ASSOCIATES INC.

in

Micah Richey, PE Project Engineer

Joson Oberman

Jason Obermeyer, PE Associate and Senior Engineer

FIGURE

EXISTING SITE TOPOGRAPHY (SEE REFERENCE 1)

SURROUNDING TOPOGRAPHY (SEE REFERENCE 2)

ACTIVE PORTION OF THE FACILITY

PUBLIC ROADS TRI-STATE PRIVATE ROADS PROPERTY BOUNDARY EXISTING TERRACE CHANNEL EXISTING RUNDOWN CHANNEL LIMITS OF CLOSED PORTIONS OF THE FACILITY

APPROXIMATE ASH DISPOSAL FOOTPRINT LIMIT (PROVIDED BY TRI-STATE) (61 ACRES)

STORMWATER DISCHARGE POINT

EXISTING PERIMETER CHANNEL

CULVERT WITH FLOW DIRECTION

THE LOCATIONS OF RUNDOWN CHANNELS ARE APPROXIMATE AND ARE BASED ON EXISTING GROUND TOPOGRAPHY AND AERIAL IMAGERY.

EXISTING SITE TOPOGRAPHY WAS PROVIDED BY TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. TOPOGRAPHY IS A COMPOSITE BASED ON SURVEYS PERFORMED BY DEL-MONT CONSULTANTS BETWEEN 2008 AND 2015.

SURROUNDING TOPOGRAPHY IS FROM THE UNITED STATES GEOLOGICAL SURVEY.

AERIAL PHOTOGRAPH IS FROM GOOGLE EARTH PRO AND WAS TAKEN IN APRIL 2015.

PROJECT NUCLA STATION ASH DISPOSAL FACILITY RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN

TITLE RUN-ON AND RUN-OFF CONTROL SYSTEM **EXISTING CONDITIONS**

PROJECT NO. 103-81938

REV. 0

FIGURE

APPENDIX A STORMWATER RUN-OFF AND RUN-ON CALCULATIONS – ACTIVE PORTION

Subject	STORMWATER RUN-OFF AND RUN-ON	CALCULATION	S – ACTIVE PORTION
Site Name:	Nucla Station Ash Disposal Facility	Reviewed by:	JEO
Project No.:	1657746	Checked by:	СРВ
Date:	October 13, 2016	Made by:	MBR

1.0 **OBJECTIVES**

These calculations have been carried out to meet the following objectives:

- 1. Determine the run-off water volume generated from the 25-year, 24-hour storm across the active portion of the Nucla Station Ash Disposal Facility (and other contributing areas) and verify that the containment berms maintained around the perimeter of the active portion will contain the design storm volume and prevent run-off.
- 2. Estimate the run-on volume generated from the 25-year, 24-hour storm that could route towards the active portion of the Nucla Station Ash Disposal Facility and verify that the existing perimeter channels have been designed and constructed to prevent run-on from flowing onto the active portion.

2.0 METHODOLOGY

2.1 Control of Run-off from the Active Portion of the Landfill

Basins contributing to the active portion of the landfill were delineated based on existing topography, as shown in Figure A-1. The United States Soil Conservation Service (USSCS) Curve Number Method was used to calculate the run-off volume due to the design storm. The depth of surface water resulting from the design storm was compared against the containment berm height to determine whether the containment berms maintained around the perimeter of the active portion are sufficient to prevent run-off from the active portion.

2.2 Prevention of Run-on to the Active Portion of the Landfill

Basins contributing to the perimeter channels preventing run-on to the active portion of the facility were delineated based on existing topography, as shown in Figure A-1. These basins include the existing landfill sideslopes. Times of concentration for basins contributing to the perimeter channels were calculated using the methodology described in TR-55 (USSCS 1986) for sheet, shallow concentrated flow and Manning's equation for channel flow. HEC-HMS modeling software (United States Army Corps of Engineers Hydrologic Engineering Center 2010) was used to simulate routing of the run-off from the landfill slopes and run-on from areas outside the landfill footprint through the perimeter channels. Peak flows were used to analyze channels, assuming normal depth using Manning's equation.

i:\16\1657746\0400\nuclaccr runon_runoffplan_fnl-13oct16\appa\1657746 app a - surfacewaterrunonanalysis 13oct16.docx

Golder Associates Inc. 44 Union Boulevard, Suite 300 Lakewood, CO 80228 USA Tel: (303) 980-0540 Fax: (303) 985-2080 www.golder.com

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

Page 2 of 3

Project No.:	1657746	Made by:	MBR
Site Name:	Nucla Station Ash Disposal Facility	Checked by:	СРВ
Date:	October 13, 2016	Reviewed by:	JEO

3.0 ASSUMPTIONS

The following assumptions were made in carrying out the calculations:

- A design storm event of 2.11 inches was used in this analysis. This event is the 25-year-frequency, 24-hour-duration storm event from "NOAA Atlas 14" (Hydrometeorological Design Studies Center 2013), as shown in Attachment A-1.
- The 2-year-frequency, 24-hour-duration storm depth, which is used in the TR-55 time of concentration method, is 1.20 inches (Hydrometeorological Design Studies Center 2013), as shown in Attachment A-1.
- The design storm is distributed in time as an SCS Type II synthetic distribution.
- Lag time is equal to 60% of the time of concentration.
- The minimum lag time is 3.0 minutes (a time of concentration of 5 minutes per TR-55).
- Maximum length of sheet flow is 100 feet.
- Kinematic wave methodology was used to route peak flows in the HEC-HMS model.
- An SCS curve number of 70 was assumed for all basins, except contributing areas within the landfill footprint, reflecting a condition with established native vegetation (assumed to be Piñon-Juniper in good condition, based on site observations) and hydrologic soil group (HSG) D. The active portion and other contributing areas within the landfill footprint were assumed to be impervious (CN=99) for conservatism.
- A Manning's roughness coefficient of 0.035 (for capacity) was assumed for the vegetated perimeter channels.
- Stormwater that falls on the area of final cover on the top surface of the northern half of the facility was assumed to route to the southern half of the facility, which is topographically lower.
- Perimeter channels are grass-lined and were idealized as 2 feet deep with no bottom width and 3H:1V sideslopes, based on topographic information and site observation of the smallest perimeter channels.

4.0 RESULTS AND CONCLUSIONS

4.1 Control of Run-off from the Active Portion of the Landfill

Basin delineations are identified on Figure A-1. The run-off water volume routing onto the active potion of the landfill due to the design storm will decrease over time. This is because the active portion of the facility will decrease in size as the top surface elevation increases with additional waste placement and as additional final cover is placed. Thus, the existing condition represents the maximum run-off condition for the remaining life of the facility.

The run-off water volume routing onto the active portion of the facility due to the design storm and the resulting depth of water requiring containment for the existing condition are calculated in Table A-1. The depth of water requiring containment on the active portion of the facility due to the design storm

Fage 3 01 3			
Project No.:	1657746	Made by:	MBR
Site Name:	Nucla Station Ash Disposal Facility	Checked by:	СРВ
Date:	October 13, 2016	Reviewed by:	JEO

is 3.4 inches. The minimum 2-foot-high containment berms maintained around this area are sufficient to contain this depth of water with ample freeboard.

4.2 Prevention of Run-on to the Active Portion of the Landfill

Basin delineations are identified on Figure A-1. The surface area of basins that potentially contribute runon to the facility (in the absence of perimeter channels) will decrease over time. This is because the top surface on the southern half of the facility will increase in elevation and the basin areas will correspondingly reduce in size. Thus, the existing condition represents the maximum run-on condition for the remaining life of the facility.

For run-on calculations, hydrologic parameters for the basins (Tables A-1 and A-2) and reaches were entered into the HEC-HMS modeling software and routed to calculate peak flows contributing to each perimeter channel (Table A-3). The HEC-HMS model inputs are included as Attachment A-2. The perimeter channels were analyzed using Manning's equation, as shown in Table A-4. The perimeter channels will convey the combined peak flow from the existing landfill sideslopes and areas routing towards the active portion of the facility, as delineated in Figure A-1, with more than 1 foot of freeboard.

5.0 REFERENCES

- Hydrometeorological Design Studies Center. 2013. Precipitation Frequency Data Server. National Oceanic and Atmospheric Administration (NOAA). Washington D. C.: NOAA.
- United States Soil Conservation Service. 1986. Urban hydrology for small watersheds. Washington D. C.: United States Department of Agriculture.
- United States Army Corps of Engineers Hydrologic Engineering Center. 2010. Hydrologic Modeling System (HEC-HMS). Version 3.5. Davis, California USA: United States Army Corps of Engineers.

TABLES

Table A-1. Subbasin Summary Table

Design Storm	25 -Year Reccurence Interval								
	2-Year	25 -Year							
Storm Duration	Depth	Depth	Storm						
(hours)	(inches)	(inches)	Distribution						
24	1.2	2.1	II						

				CN = 70	CN = 99						
				Sagebrush							
				with grass							
				understory							
	Subbasin	Subbasin		HSG D, fair		Composite		Unit Runoff	Runoff	Runoff	Run-off
	Area	Area	Subbasin Area	condition	Impervious	SCS Curve	S = <u>1000</u> - 10	Q	Volume	Volume	Depth
Subbasin ID	(ft ²)	(acres)	(sq mile)	(acres)	(acres)	No.	CN	(in)	(ac-ft)	(ft ³)	(in)
AF	1,006,506	23.11	0.0361		23.11	CN = 99	0.10	1.99	3.84	167,201	2.4
SA	689,013	15.82	0.0247		15.82	CN = 99	0.10	1.99	2.63	114,459	5.4
RE	847,942	19.47	0.0304	19.47		CN = 70	4.29	0.28	0.46	20,026	
RN	399,210	9.16	0.0143	9.16		CN = 70	4.29	0.28	0.22	9,428	
SP1	75,473	1.73	0.0027	1.73		CN = 70	4.29	0.28	0.04	1,782	
SP2	253,629	5.82	0.0091	5.82		CN = 70	4.29	0.28	0.14	5,990	N/A
SP3	172,532	3.96	0.0062	3.96		CN = 70	4.29	0.28	0.09	4,075	
NP	389,751	8.95	0.0140	8.95		CN = 70	4.29	0.28	0.21	9,205	
Total:	3,834,056	88.02	0.14						7.63	332,166	

Table A-2. Basin Time of Concentration Calculations

Tri-State Generation and Transmission Association Nucla Station Ash Disposal Facility Project Number: 1657746

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	JEO

						Flow Segment 1										Flow Segment 2		
			Total	Total						Typical Hydraulic							Typical Hydraulic	
	Subbasin		Lag	Travel						Radius	Travel						Radius	Travel
	Area	Composite	(0.6*Tc)	Time	Type of	Length	Slope			(Channel Only)	Time	Type of	Length	Slope			(Channel Only)	Time
Subbasin ID	(sq mile)	Curve Number	(min)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)
RE	0.0304	70	14.1	23.4	Sheet	100	0.020	н	Range		14.3	Shallow	910	0.066	U	Unpaved		3.7
RN	0.0143	70	12.7	21.2	Sheet	100	0.020	н	Range		14.3	Shallow	500	0.068	U	Unpaved		2.0
SP1	0.0027	70	11.5	19.1	Sheet	90	0.200	н	Range		5.2	Channel	475	0.005	E	Earth-lined	0.05	13.9
SP2	0.0091	70	7.2	11.9	Sheet	50	0.200	н	Range		3.3	Channel	1125	0.010	E	Earth-lined	0.22	8.7
SP3	0.0062	70	6.2	10.4	Sheet	50	0.174	н	Range		3.4	Channel	870	0.010	Е	Earth-lined	0.21	6.9
NP	0.0140	70	13.9	23.1	Sheet	65	0.277	Н	Range		3.5	Channel	2190	0.042	E	Earth-lined	0.06	19.6

Note:

(1) Refer to Attachment A for Roughness Condition descriptions and Tc Coefficients.

Golder

Table A-2. Basin Time of Concentration Calculations

Tri-State Generation and Transmission Association Nucla Station Ash Disposal Facility Project Number: 1657746

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	JEO

							Flow Segment 3							Flow Segment 4		
								Typical Hydraulic							Typical Hydraulic	
	Subbasin							Radius	Travel						Radius	Travel
	Area	Composite	Type of	Length	Slope			(Channel Only)	Time	Type of	Length	Slope			(Channel Only)	Time
Subbasin ID	(sq mile)	Curve Number	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)
RE	0.0304	70	Channel	475	0.005	E	Earth-lined	0.20	5.5							
RN	0.0143	70	Channel	190	0.074	E	Earth-lined	0.07	1.2	Channel	245	0.005	E	Earth-lined	0.13	3.8
SP1	0.0027	70														
SP2	0.0091	70														
SP3	0.0062	70														
NP	0.0140	70														

Note:

(1) Refer to Attachment A for Roughness Condition descriptions and Tc Coefficients.

1657746

Table A-3. Flow Results from HEC-HMS

Tri-State Generatio	on and Transmission Association
Nucla Station Ash	Disposal Facility
Project Number:	1657746

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	JEO

HEC-HMS Basin Model:	Nucla
HEC-HMS Met. Model:	25-yr, 24-hr
HEC-HMS Control Specs:	48-hr, 1-min

Hydrologic Element	Drainage Area (sq mile)	Peak Discharge (cfs)	Time of Peak	Total Volume (ac-ft)
RE	0.030	3.68	02Jun2525, 01:11	0.5
SP1	0.003	0.375	02Jun2525, 01:08	0
Junction-SP1-RE	0.033	4.035	02Jun2525, 01:10	0.5
Reach-SP2	0.033	4.002	02Jun2525, 01:21	0.5
SP2	0.017	3.126	02Jun2525, 01:03	0.3
SP3	0.006	1.186	02Jun2525, 01:02	0.1
Sink-1	0.057	5.299	02Jun2525, 01:20	0.8
RN	0.014	1.861	02Jun2525, 01:09	0.2
Reach-NP	0.014	1.851	02Jun2525, 01:13	0.2
NP	0.014	1.712	02Jun2525, 01:10	0.2
Sink-2	0.028	3.504	02Jun2525, 01:12	0.4

Table A-4. Channel Hydraulic Calculations

Date:	10/13/16
By:	MBR
Chkd:	СРВ
Apprvd:	JEO

				Cha	nnel Desig	jn Geome	try			Channel R	oughness Para	meters
Reach Designation	Q25 from HEC-HMS (cfs)	HEC HMS Element ID for Q	Approximate Channel Length (ft)	Bed Slope (ft/ft)	Left Side Slope (H:1V)	Right Side Slope (H:1V)	Bottom Width (ft)	Minimum Channel Depth (ft)	Desi	gn Channel Lining	Mannings 'n' for Capacity (Depth Calculation)	Mannings 'n' for Stability (Velocity Calculation)
North Perimeter	3.5	Sink-2		0.025	3.0	3.0	0	2.0	G	Grass-lined	0.035	0.030
South Perimeter	5.3	Sink-1		0.015	3.0	3.0	0	2.0	G	Grass-lined	0.035	0.030
SW Perimeter	1.2	SP3		0.010	3.0	3.0	0	2.0	G	Grass-lined	0.035	0.030

Table A-4. Channel Hydraulic Calculations

Date:	10/13/16
By:	MBR
Chkd:	СРВ
Apprvd:	JEO

					Ну	draulic Calcula	ations			Channel	Evaluations
Reach Designation	Q25 from HEC-HMS (cfs)	HEC HMS Element ID for Q	Maximum Velocity (ft/sec)	Maximum Normal Flow Depth (ft)	Froude Number	Normal Depth Shear Stress (Ib/ft ²)	Stream Power (W/m ²)	Top Width of Flow (ft)	Top Width of Channel (ft)	Available	e Freeboard (ft)
North Perimeter	3.5	Sink-2	3.4	0.62	1.09	0.97	47.49	3.7	12.0	1.4	ОК
South Perimeter	5.3	Sink-1	3.1	0.80	0.88	0.75	33.53	4.8	12.0	1.2	ОК
SW Perimeter	1.2	SP3	1.8	0.49	0.66	0.31	8.13	3.0	12.0	1.5	ОК

FIGURE

TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION

DESIGNED PREPARED REVIEWED APPROVED

	\backslash

EXISTING SITE TOPOGRAPHY (SEE REFERENCE 1)

SURROUNDING TOPOGRAPHY (SEE REFERENCE 2)

PUBLIC ROADS TRI-STATE PRIVATE ROADS PROPERTY BOUNDARY EXISTING TERRACE CHANNEL EXISTING RUNDOWN CHANNEL BASIN BOUNDARY APPROXIMATE ASH DISPOSAL FOOTPRINT LIMIT (PROVIDED BY TRI-STATE) (61 ACRES) STORMWATER DISCHARGE POINT EXISTING PERIMETER CHANNEL \rightarrow XXX \rightarrow CULVERT WITH FLOW DIRECTION

THE LOCATIONS OF RUNDOWN CHANNELS ARE APPROXIMATE AND ARE BASED ON EXISTING GROUND TOPOGRAPHY AND AERIAL IMAGERY.

EXISTING SITE TOPOGRAPHY WAS PROVIDED BY TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. TOPOGRAPHY IS A COMPOSITE BASED ON SURVEYS PERFORMED BY DEL-MONT CONSULTANTS BETWEEN 2008 AND 2015.

2. SURROUNDING TOPOGRAPHY IS FROM THE UNITED STATES GEOLOGICAL SURVEY.

AERIAL PHOTOGRAPH IS FROM GOOGLE EARTH PRO AND WAS TAKEN IN APRIL 2015.

NUCLA STATION ASH DISPOSAL FACILITY RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN

TITLE **BASIN DELINEATIONS**

PROJECT NO. 1657746

PROJECT

REV. 0

FIGURE

ATTACHMENT A-1 NOAA ATLAS 14 DATA FOR NUCLA STATION ASH DISPOSAL FACILITY Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Redvale, Colorado, US* Latitude: 38.2043°, Longitude: -108.4841° Elevation: 5956 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Averag	e recurrenc	e interval (y	ears)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.132	0.162	0.220	0.275	0.361	0.437	0.519	0.611	0.743	0.853	
	(0.103-0.171)	(0.127-0.210)	(0.172-0.286)	(0.213-0.359)	(0.276-0.507)	(0.323-0.619)	(0.370-0.757)	(0.417-0.919)	(0.487-1.15)	(0.540-1.33)	
10-min	0.193	0.237	0.322	0.402	0.529	0.639	0.760	0.894	1.09	1.25	
	(0.151-0.250)	(0.186-0.308)	(0.251-0.419)	(0.312-0.526)	(0.404-0.743)	(0.473-0.906)	(0.542-1.11)	(0.610-1.35)	(0.713-1.69)	(0.790-1.95)	
15-min	0.235	0.290	0.392	0.491	0.645	0.780	0.927	1.09	1.33	1.52	
	(0.185-0.305)	(0.227-0.376)	(0.306-0.511)	(0.381-0.642)	(0.492-0.906)	(0.577-1.10)	(0.661-1.35)	(0.744-1.64)	(0.869-2.06)	(0.964-2.38)	
30-min	0.332	0.409	0.552	0.688	0.900	1.08	1.28	1.50	1.82	2.08	
	(0.261-0.430)	(0.321-0.530)	(0.431-0.718)	(0.534-0.900)	(0.686-1.26)	(0.800-1.53)	(0.914-1.87)	(1.02-2.26)	(1.19-2.83)	(1.32-3.25)	
60-min	0.421	0.516	0.689	0.849	1.09	1.30	1.53	1.77	2.12	2.41	
	(0.330-0.545)	(0.405-0.669)	(0.538-0.897)	(0.659-1.11)	(0.830-1.52)	(0.960-1.83)	(1.08-2.21)	(1.21-2.65)	(1.39-3.28)	(1.52-3.76)	
2-hr	0.510	0.623	0.826	1.01	1.29	1.52	1.77	2.04	2.42	2.73	
	(0.404-0.652)	(0.494-0.798)	(0.653-1.06)	(0.794-1.31)	(0.986-1.76)	(1.13-2.11)	(1.27-2.53)	(1.40-3.01)	(1.60-3.69)	(1.74-4.21)	
3-hr	0.567	0.685	0.894	1.08	1.36	1.59	1.84	2.11	2.48	2.78	
	(0.453-0.720)	(0.547-0.871)	(0.711-1.14)	(0.855-1.39)	(1.05-1.85)	(1.19-2.19)	(1.33-2.61)	(1.46-3.09)	(1.65-3.76)	(1.79-4.27)	
6-hr	0.684	0.818	1.05	1.25	1.54	1.78	2.04	2.30	2.67	2.97	
	(0.553-0.858)	(0.660-1.03)	(0.842-1.32)	(0.999-1.58)	(1.20-2.06)	(1.35-2.42)	(1.48-2.84)	(1.61-3.32)	(1.79-3.99)	(1.93-4.50)	
12-hr	0.848	0.997	1.25	1.48	1.81	2.09	2.38	2.68	3.11	3.45	
	(0.693-1.05)	(0.814-1.24)	(1.02-1.56)	(1.20-1.85)	(1.43-2.39)	(1.60-2.79)	(1.75-3.28)	(1.89-3.83)	(2.11-4.59)	(2.27-5.16)	
24-hr	1.04	1.20	1.48	1.73	2.11	2.42	2.75	3.10	3.60	4.00	
	(0.862-1.27)	(0.992-1.47)	(1.22-1.82)	(1.42-2.14)	(1.68-2.74)	(1.87-3.20)	(2.05-3.75)	(2.22-4.37)	(2.47-5.25)	(2.66-5.92)	
2-day	1.25 (1.05-1.51)	1.42 (1.19-1.72)	1.72 (1.43-2.09)	1.99 (1.65-2.43)	2.39 (1.93-3.07)	2.73 (2.14-3.56)	3.08 (2.33-4.15)	3.46 (2.50-4.82)	4.00 (2.77-5.76)	4.43 (2.98-6.47)	
3-day	1.39	1.58	1.91	2.21	2.63	2.99	3.36	3.75	4.30	4.74	
	(1.17-1.66)	(1.33-1.89)	(1.60-2.30)	(1.84-2.67)	(2.13-3.35)	(2.35-3.86)	(2.55-4.47)	(2.73-5.17)	(3.00-6.14)	(3.21-6.87)	
4-day	1.50	1.71	2.07	2.38	2.83	3.20	3.58	3.99	4.54	4.99	
	(1.27-1.79)	(1.45-2.04)	(1.74-2.48)	(1.99-2.87)	(2.30-3.57)	(2.53-4.10)	(2.73-4.74)	(2.91-5.46)	(3.18-6.44)	(3.39-7.19)	
7-day	1.78	2.02	2.42	2.77	3.26	3.65	4.06	4.48	5.05	5.50	
	(1.52-2.10)	(1.73-2.38)	(2.06-2.87)	(2.34-3.30)	(2.67-4.05)	(2.91-4.62)	(3.12-5.30)	(3.29-6.06)	(3.56-7.08)	(3.77-7.85)	
10-day	2.03	2.29	2.72	3.09	3.61	4.02	4.44	4.87	5.46	5.92	
	(1.74-2.37)	(1.97-2.68)	(2.33-3.19)	(2.63-3.65)	(2.97-4.44)	(3.22-5.04)	(3.43-5.75)	(3.60-6.54)	(3.88-7.59)	(4.08-8.39)	
20-day	2.70	3.02	3.55	3.98	4.59	5.06	5.53	6.01	6.65	7.13	
	(2.35-3.12)	(2.63-3.49)	(3.08-4.11)	(3.43-4.64)	(3.81-5.55)	(4.10-6.24)	(4.32-7.05)	(4.49-7.93)	(4.76-9.10)	(4.97-9.98)	
30-day	3.25	3.63	4.25	4.75	5.44	5.96	6.48	7.00	7.67	8.17	
	(2.85-3.72)	(3.18-4.16)	(3.71-4.88)	(4.13-5.50)	(4.55-6.52)	(4.87-7.29)	(5.09-8.18)	(5.26-9.15)	(5.53-10.4)	(5.74-11.3)	
45-day	3.92	4.39	5.15	5.75	6.56	7.16	7.74	8.30	9.01	9.53	
	(3.47-4.45)	(3.88-5.00)	(4.53-5.88)	(5.03-6.61)	(5.51-7.77)	(5.88-8.66)	(6.12-9.66)	(6.27-10.7)	(6.53-12.1)	(6.73-13.1)	
60-day	4.48	5.05	5.93	6.63	7.55	8.21	8.84	9.45	10.2	10.7	
	(3.99-5.06)	(4.48-5.71)	(5.25-6.73)	(5.83-7.57)	(6.37-8.87)	(6.77-9.86)	(7.02-11.0)	(7.17-12.1)	(7.42-13.6)	(7.60-14.7)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Wed Jun 29 19:49:30 2016

Back to Top

Maps & aerials

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_printpage.html?lat=38,2043&lon=-108.4841&data=depth&units=english&series=pds

Large scale terrain

Large scale map

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

ATTACHMENT A-2 HEC-HMS MODEL INPUTS

Sub Bas	Sub Basin Area			
Subbasin	Area (mi²)	Subbasi		
RE	0.0304	RE		
SP1	0.0027	SP1		
SP2	0.0174	SP2		
SP3	0.0062	SP3		
RN	0.0143	RN		
NP	0.0080	NP		

Loss SCS Curve Number								
Subbasin	Initial Abstraction (in)	Curve Number	Impervious (%)					
RE		70	0					
SP1		70	0					
SP2		70	0					
SP3		70	0					
RN		70	0					
NP		70	0					

Transform SCS Unit Hydrograph							
Subbasin	Graph Type	Lag Time (min)					
RE	Standard	14.1					
SP1	Standard	11.5					
SP2	Standard	7.2					
SP3	Standard	6.2					
RN	Standard	12.7					
NP	Standard	13.9					

Routing										
Kinematic Wave Channel										
	Length	Slope				Diameter	Width	Side Slope		
Reach	(ft)	(ft/ft)	Manning's n	subreaches	Shape	(ft)	(ft)	(xH:1V)		
Reach-SP2	2930	0.015	0.022	2	Triangle			3		
Reach-NP	1270	0.024	0.022	2	Triangle			3		

APPENDIX B STORMWATER RUN-OFF CALCULATIONS – CLOSURE CONDITIONS

Date:	October 13, 2016	Made by:	MBR		
Project No.:	1657746	Checked by:	СРВ		
Site Name:	Nucla Station Ash Disposal Facility – Montrose County, Colorado	Reviewed by:	MAY		
Subject:	STORMWATER RUN-OFF CALCULATIONS				

1.0 OBJECTIVE

Determine the 100-year, 24-hour (design storm) peak stormwater flows for the Nucla Station Ash Disposal Facility and the possible future vertical expansion. Verify that the stormwater drainage features (terrace channels and downchutes) can convey the design storm peak flow rates.

2.0 METHODOLOGY

Basins for the surface water control system were delineated based on existing and possible future channels and topography, shown in Figure B-1. Times of concentration were calculated using the methodology described in TR-55 (US SCS 1986) for sheet flow, shallow concentrated flow, and channel flow. HEC-HMS modeling software (US CoE Hydrologic Engineering Center 2013) was used to simulate the routing of surface run-off from the final cover system slopes and the resulting peak flows that will occur. Peak flows were used to analyze terrace channels and downchutes, assuming normal depth using Flowmaster software (Bentley Systems 2009).

3.0 ASSUMPTIONS

- A design storm event of 2.75 inches was used in this analysis. This event is the 24-hour duration, 100-year frequency storm event from "NOAA Atlas 14" (HDSC 2013).
- The 2-year frequency, 24-hour duration storm depth, which is used in the TR-55 time of concentration method, is 1.20 inches (HDSC 2013).
- The design storm is distributed in time as an SCS Type II synthetic distribution.
- Lag time is equal to 60% of the time of concentration.
- The minimum lag time is 3.0 minutes (a time of concentration of 5 minutes per TR-55).
- Maximum length of sheet flow is 100 feet.
- Kinematic wave methodology was used to route peak flows in the HEC-HMS model; some reaches did not include routing for conservatism and simplicity.
- An SCS curve number of 70 was assumed for all basins, reflecting a post-closure, covered condition with native vegetation, which is assumed to be "Sagebrush with grass understory, fair condition" and a hydrologic soil group (HSG) D.
- A Manning's roughness coefficient of 0.035 (for capacity) was assumed for riprap-lined downchutes. A Manning's roughness coefficient of 0.030 (for capacity) was assumed for the grass-lined terrace channels.

i:\16\1657746\0400\nuclaccr runon_runoffplan_fnl-13oct16\appb\1657746 app b-stormwater calc 13oct16.docx

Faye Z OI Z			
Project No.:	1657746	Made by:	MBR
Site Name:	Nucla Station Ash Disposal Facility	Checked by:	СРВ
Date:	October 13, 2016	Reviewed by:	MAY

4.0 CALCULATIONS

Channel reach locations and basin delineations are identified in Figure B-1. Hydrologic parameters for the basins (Tables B-1 and B-2) and reaches were entered into the HEC-HMS modeling software and routed to calculate peak flows for each basin and channel (Table B-3). Channels were checked for the ability to accommodate the peak flow (Attachment B-1). The HEC-HMS model inputs are included as Attachment B-2.

5.0 **RESULTS/CONCLUSIONS**

The downchute reaches are summarized in Attachment B-1, with peak flows, depths, and velocities associated with the design storm event. The downchutes are parabolic, 1 foot deep, and 10 feet wide. The hydraulics for the worst-case terrace channel was evaluated; this is the terrace channel that captures the run-off from subbasins WS5-A and WS4-B. The terrace channels are formed by the 10-foot-wide terrace sloping back toward the landfill sideslope at 5%, which makes the channels 0.5 feet deep.

All downchutes and the worst-case terrace channel (and therefore all terrace channels) were found to have adequate capacity to convey the 100-year, 24-hour peak flow event without overtopping.

6.0 **REFERENCES**

- Bentley Systems, Inc. 2009. Bentley FlowMaster V8i [software package]. Watertown, CT: Bentley Systems, Inc.
- Hydrometeorological Design Studies Center (HDSC). 2013. Precipitation Frequency Data Server. National Oceanic and Atmospheric Administration (NOAA). Washington D.C.: NOAA.
- United States Soil Conservation Service (US SCS). 1986. Urban Hydrology for Small Watersheds. Washington D.C.: United States Department of Agriculture.
- United States Army Corps of Engineers (US CoE) Hydrologic Engineering Center. 2010. Hydrologic Modeling System (HEC-HMS). (3.5). Davis, California, USA: US CoE. August 10.
- Robinson, K.M., C.E. Rice, & K.C. Kadavy. 1997. Design of Rock Chutes. Presented at the 1997 ASAE Annual International Meeting, ASAE Paper No. 972062. St. Joseph, MI: ASAE.

TABLES

Table B-1. Subbasin Summary Table

Design Storm	100 -Year Reccurence Interval	
	2 Year 100 Year	

100	-Tear Reccurein	e milei vai
2-Year	100 -Year	
Depth	Depth	Storm
(inches)	(inches)	Distribution
1.20	2.75	II
	2-Year Depth (inches) 1.20	2-Year100 -YearDepthDepth(inches)(inches)1.202.75

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	MAY

	r			011 70		1			
				CN = 70					
				Sagebruch with					
				grass understory					
	Subbasin				Composito		Linit Runoff	Pupoff	Runoff
	Area	Subbasin Area	Subbasin Area	condition	SCS Curve	S = 1000 - 10		Volume	Volume
Subbasin ID	(ft ²)	(acres)	(eq mile)	(acres)	No	CN	(in)	(ac-ft)	(ft ³)
	20022.207	(acres)	(34 mile)	(acres)	NU. 70	4.00	0.59	(ac-it)	(11)
WST-A	46715 972	1.07	0.0007	1.07	CN = 70	4.29	0.58	0.02	2 259
WS1-D	407 15.873	0.22	0.0017	0.22	CN = 70	4.29	0.58	0.03	2,230
W91-0	11061 426	0.22	0.0003	0.22	CN = 70	4.20	0.50	0.01	430
	45025.240	0.27	0.0004	0.27	CN = 70	4.29	0.58	0.01	373
WSZ-A	40000.210	1.05	0.0016	1.05	CN = 70	4.29	0.58	0.05	2,215
W62 C	10417.4	0.04	0.0020	0.04	CN = 70	4.29	0.58	0.00	2,731
W62 D	6209 162	0.24	0.0004	0.24	CN = 70	4.29	0.58	0.01	205
W32-D	42222 692	0.14	0.0002	0.14	CN = 70	4.29	0.58	0.01	2 0 4 1
WOD-A	42232.002	0.97	0.0013	0.97	CN = 70	4.29	0.58	0.03	2,041
WS3-D	12002 564	0.28	0.0023	0.28	CN = 70	4.29	0.50	0.07	580
W/92 D	0964 042	0.20	0.0004	0.20	CN = 70	4.23	0.00	0.01	477
WS3-D	9004.942	0.23	0.0004	0.23	CN = 70	4.29	0.50	0.01	4//
WS4-R	03137.271	2.10	0.0023	2.10	CN = 70	4.23	0.58	0.00	3,342
WS4 C	14121 424	2.10	0.0033	2.10	CN = 70	4.29	0.58	0.10	4,420
WS4-C	14131.424	0.32	0.0005	0.32	CN = 70	4.29	0.58	0.02	503 507
	10403.349	0.24	0.0004	0.24	CN = 70	4.29	0.58	0.01	7.044
WS5-A	104331.03	3.77	0.0059	0.61	CN = 70	4.29	0.56	0.18	1,941
WOD-D	20302.302	0.01	0.0009	0.01	CN = 70	4.29	0.58	0.03	1,273
WS5-C	20420.000	0.01	0.0009	0.01	CN = 70	4.29	0.56	0.03	1,277
WS0-A	124407.91	2.00	0.0045	2.00	CN = 70	4.29	0.56	0.14	0,010
WSC-D	36043.013	1.35	0.0021	1.35	CN = 70	4.29	0.56	0.07	2,034
WS6-C	44192.141	1.01	0.0016	1.01	CN = 70	4.29	0.56	0.05	2,130
	94044.077	2.17	0.0034	2.17	CN = 70	4.29	0.58	0.10	4,374
WOT-A	91244.47	2.09	0.0053	2.09	CN = 70	4.29	0.58	0.10	4,409
	124040.24	3.43	0.0054	3.43	CN = 70	4.29	0.58	0.17	6.029
WO0-A	124949.24	2.07	0.0045	2.07	CN = 70	4.29	0.58	0.14	0,038
W30-D	40562.050	1.19	0.0019	1.19	CN = 70	4.29	0.58	0.00	2,306
W30-C	49502.959 91600 4	1.14	0.0018	1.14	CN = 70	4.29	0.58	0.05	2,395
WEO R	01099.4	1.00	0.0029	1.00	CN = 70	4.29	0.58	0.09	5,940
WS0 C	97245 509	2.03	0.0041	2.03	CN = 70	4.29	0.58	0.13	1 216
WS0 D	51221 271	2.00	0.0031	2.00	CN = 70	4.20	0.50	0.10	2,476
W/S0-F	17277 710	0.40	0.0018	0.40	CN = 70	4.29	0.58	0.00	2,470
WSQ-F	20326 505	0.40	0.0007	0.40	CN = 70	4.20	0.50	0.02	033
WS10-A	110581 10	2.54	0.0007	2.54	CN = 70	4.20	0.50	0.02	5 344
WS10-B	79138 061	1.82	0.0040	1.82	CN = 70	4.20	0.58	0.12	3 824
WS10-C	55675 412	1.02	0.0020	1.02	CN = 70	4.20	0.58	0.05	2 690
WS10-D	51105 047	1.20	0.0020	1.20	CN = 70	4.20	0.50	0.00	2,030
WS11-A	43778 854	1.17	0.0016	1.17	CN = 70	4.20	0.58	0.00	2 116
WS11-B	621/3 69	1.01	0.0010	1.01	CN = 70	4.20	0.50	0.03	3,003
WS11-C	40152 645	0.92	0.0022	0.92	CN = 70	4.20	0.58	0.07	1 940
WS11-D	18345 650	0.42	0.0017	0.42	CN = 70	4 29	0.58	0.02	887
WS12-A	19907 536	0.46	0.0007	0.46	CN = 70	4 29	0.58	0.02	962
WS12-B	23837 608	0.55	0.0009	0.55	CN = 70	4 29	0.58	0.03	1 152
WS12-C	31497 818	0.00	0.0000	0.72	CN = 70	4 29	0.58	0.03	1 522
WS13-A	24305 99	0.56	0.0009	0.56	CN = 70	4 29	0.58	0.03	1 175
WS13-B	53831 318	1 24	0.0000	1.24	CN = 70	4 29	0.58	0.06	2 601
	00001.010	0.00	0.0010	1.27	011-70	7.20	0.00	0.00	2,001
		0.00	0.0000						
Total:	2.513.319	57.70	0.09					2.79	121,455
. 01011	, , 0					1			

Table B-2. Basin Time of Concentration Calculations

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	MAY

									Flow Segment 1			1			ŀ	Flow Segment 2		
			Total	Total					0	Typical Hydraulic						0	Typical Hydraulic	1
			Lag	Travel						Radius	Travel						Radius	Travel
	Subbasin Area	Composite Curve	(0.6*Tc)	Time	Type of	Length	Slope			(Channel Only)	Time	Type of	Length	Slope			(Channel Only)	Time
Subbasin ID	(sq mile)	Number	(min)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)
WS1-A	0.0007	70	10.9	18.1	Sheet	100	0.02	Н	Range		14.3	Shallow	30	0.02	2 U	Unpaved		0.2
WS1-B	0.0017	70	10.8	18.0	Sheet	100	0.02	Н	Range		14.3	Shallow	140	0.02	2 U	Unpaved		1.0
WS1-C	0.0003	70	3.2	5.3	Sheet	40	0.4	Н	Range		2.1	Channel	150	0.005	5 E	Earth-lined	0.08	3.2
WS1-D	0.0004	70	4.3	7.2	Sheet	45	0.4	Н	Range		2.3	Channel	230	0.005	δE	Earth-lined	0.08	4.9
WS2-A	0.0016	70	10.6	17.6	Sheet	100	0.02	Н	Range		14.3	Shallow	145	0.02	2 U	Unpaved		1.1
WS2-B	0.0020	70	11.5	19.2	Sheet	100	0.02	Н	Range		14.3	Shallow	275	0.02	2 U	Unpaved		2.0
WS2-C	0.0004	70	3.9	6.5	Sheet	35	0.4	Н	Range		1.9	Channel	215	0.005	δE	Earth-lined	0.08	4.6
WS2-D	0.0002	70	2.9	4.9	Sheet	40	0.4	Н	Range		2.1	Channel	120	0.005	δE	Earth-lined	0.07	2.8
WS3-A	0.0015	70	10.6	17.7	Sheet	100	0.02	Н	Range		14.3	Shallow	280	0.02	2 U	Unpaved		2.0
WS3-B	0.0023	70	11.5	19.1	Sheet	100	0.02	Н	Range		14.3	Shallow	245	0.02	2 U	Unpaved		1.8
WS3-C	0.0004	70	3.7	6.1	Sheet	40	0.4	Н	Range		2.1	Channel	190	0.005	δE	Earth-lined	0.08	4.1
WS3-D	0.0004	70	3.5	5.8	Sheet	35	0.4	Н	Range		1.9	Channel	185	0.005	δE	Earth-lined	0.08	4.0
WS4-A	0.0025	70	11.1	18.4	Sheet	100	0.02	Н	Range		14.3	Shallow	245	0.02	2 U	Unpaved		1.8
WS4-B	0.0033	70	11.6	19.3	Sheet	100	0.02	Н	Range		14.3	Shallow	240	0.02	2 U	Unpaved		1.8
WS4-C	0.0005	70	4.0	6.6	Sheet	45	0.4	Н	Range		2.3	Channel	220	0.005	δE	Earth-lined	0.09	4.3
WS4-D	0.0004	70	3.4	5.6	Sheet	40	0.4	Н	Range		2.1	Channel	165	0.005	δE	Earth-lined	0.08	3.5
WS5-A	0.0059	70	12.6	21.0	Sheet	100	0.02	Н	Range		14.3	Shallow	275	0.02	2 U	Unpaved		2.0
WS5-B	0.0009	70	6.0	10.1	Sheet	40	0.4	Н	Range		2.1	Channel	435	0.005	δE	Earth-lined	0.10	8.0
WS5-C	0.0009	70	6.3	10.5	Sheet	40	0.4	Н	Range		2.1	Channel	460	0.005	δE	Earth-lined	0.10	8.5
WS6-A	0.0045	70	12.8	21.3	Sheet	100	0.02	Н	Range		14.3	Shallow	250	0.02	2 U	Unpaved		1.8
WS6-B	0.0021	70	6.2	10.3	Sheet	50	0.4	Н	Range		2.5	Channel	535	0.005	δE	Earth-lined	0.14	7.9
WS6-C	0.0016	70	3.7	6.1	Sheet	40	0.4	Н	Range		2.1	Channel	275	0.005	δE	Earth-lined	0.14	4.0
WS6-D	0.0034	70	4.8	8.1	Sheet	55	0.4	Н	Range		2.7	Channel	280	0.005	5 E	Earth-lined	0.18	3.5
WS7-A	0.0033	70	4.3	7.1	Sheet	55	0.4	Н	Range		2.7	Channel	205	0.005	δE	Earth-lined	0.18	2.5
WS7-B	0.0054	70	5.1	8.5	Sheet	45	0.4	Н	Range		2.3	Channel	540	0.005	δE	Earth-lined	0.20	6.3
WS8-A	0.0045	70	12.4	20.7	Sheet	100	0.02	Н	Range		14.3	Shallow	250	0.02	2 U	Unpaved		1.8
WS8-B	0.0019	70	4.6	7.6	Sheet	45	0.4	Н	Range		2.3	Channel	300	0.005	5 E	Earth-lined	0.14	4.4
WS8-C	0.0018	70	4.5	7.5	Sheet	50	0.4	Н	Range		2.5	Channel	340	0.005	5 E	Earth-lined	0.14	5.0
WS9-A	0.0029	70	11.2	18.7	Sheet	100	0.02	Н	Range		14.3	Shallow	205	0.02	2 U	Unpaved		1.5
WS9-B	0.0041	70	12.2	20.3	Sheet	100	0.02	Н	Range		14.3	Shallow	245	0.02	2 U	Unpaved		1.8
WS9-C	0.0031	70	4.5	7.6	Sheet	45	0.4	Н	Range		2.3	Channel	300	0.005	5 E	Earth-lined	0.17	3.9
WS9-D	0.0018	70	3.9	6.5	Sheet	45	0.4	Н	Range		2.3	Channel	185	0.005	δE	Earth-lined	0.15	2.6
WS9-E	0.0006	70	5.2	8.7	Sheet	100	0.16	Н	Range		6.2	Channel	215	0.02	2 E	Earth-lined	0.07	2.5
WS9-F	0.0007	70	4.0	6.7	Sheet	100	0.4	Н	Range		4.3	Channel	290	0.04	ΙE	Earth-lined	0.07	2.4
WS10-A	0.0040	70	11.3	18.8	Sheet	100	0.02	Н	Range		14.3	Shallow	230	0.02	2 U	Unpaved		1.7
WS10-B	0.0028	70	11.0	18.3	Sheet	100	0.02	Н	Range		14.3	Shallow	205	0.02	2 U	Unpaved		1.5
WS10-C	0.0020	70	4.0	6.7	Sheet	50	0.4	Н	Range		2.5	Channel	185	0.005	δE	Earth-lined	0.15	2.6
WS10-D	0.0018	70	4.1	6.8	Sheet	50	0.4	Н	Range		2.5	Channel	190	0.005	δE	Earth-lined	0.15	2.7
WS11-A	0.0016	70	10.7	17.8	Sheet	100	0.02	Н	Range		14.3	Shallow	130	0.02	2 U	Unpaved		0.9
WS11-B	0.0022	70	11.1	18.5	Sheet	100	0.02	Н	Range		14.3	Shallow	225	0.02	2 U	Unpaved		1.6
WS11-C	0.0014	70	3.9	6.6	Sheet	45	0.4	Н	Range		2.3	Channel	200	0.005	5 E	Earth-lined	0.13	3.1
WS11-D	0.0007	70	3.2	5.4	Sheet	55	0.4	Н	Range		2.7	Channel	150	0.005	δE	Earth-lined	0.15	2.1
WS12-A	0.0007	70	11.1	18.5	Sheet	100	0.02	Н	Range		14.3	Shallow	125	0.02	2 U	Unpaved		0.9
WS12-B	0.0009	70	3.3	5.5	Sheet	50	0.4	Н	Range		2.5	Channel	105	0.005	δE	Earth-lined	0.11	1.8
WS12-C	0.0011	70	4.2	7.1	Sheet	55	0.4	Н	Range		2.7	Channel	270	0.005	δE	Earth-lined	0.12	4.4
WS13-A	0.0009	70	3.6	5.9	Sheet	50	0.4	Н	Range		2.5	Channel	200	0.005	5 E	Earth-lined	0.11	3.5
WS13-B	0.0019	70	3.7	6.1	Sheet	50	0.4	Н	Range		2.5	Channel	195	0.005	5 E	Earth-lined	0.15	2.7

Table B-2. Basin Time of Concentration Calculations

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	MAY

			1			I	Flow Segment 3			1			F	Flow Segment 4		
					l		101. 22.3.	Typical Hydraulic						1011 2 2 3	Typical Hydraulic	
								Radius	Travel						Radius	Travel
	Subbasin Area	Composite Curve	Type of	Length	Slope			(Channel Only)	Time	Type of	Length	Slope			(Channel Only)	Time
Subbasin ID	(sq mile)	Number	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)
WS1-A	0.0007	70	Shallow	50	0.400	U	Unpayed	0.35	0.1	Channel	165	0.005	E	Earth-lined	0.08	3.5
WS1-B	0.0017	70	Shallow	45	0.400	U	Unpaved	0.47	0.1	Channel	160	0.005	E	Earth-lined	0.12	2.6
WS1-C	0.0003	70							-							
WS1-D	0.0004	70														
WS2-A	0.0016	70	Shallow	45	0.400	U	Unpaved		0.1	Channel	130	0.005	Е	Earth-lined	0.11	2.2
WS2-B	0.0020	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	175	0.005	Е	Earth-lined	0.12	2.9
WS2-C	0.0004	70							-							
WS2-D	0.0002	70														
WS3-A	0.0015	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	75	0.005	Е	Earth-lined	0.11	1.3
WS3-B	0.0023	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	195	0.005	Е	Earth-lined	0.13	3.0
WS3-C	0.0004	70							-							
WS3-D	0.0004	70														
WS4-A	0.0025	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	150	0.005	Е	Earth-lined	0.13	2.3
WS4-B	0.0033	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	230	0.005	Е	Earth-lined	0.15	3.2
WS4-C	0.0005	70					· · · · · · · · · · · · · · · · · · ·									
WS4-D	0.0004	70														
WS5-A	0.0059	70	Shallow	35	0.400	U	Unpaved		0.1	Channel	375	0.005	Е	Earth-lined	0.18	4.7
WS5-B	0.0009	70					· · · · · · · · · · · · · · · · · · ·									
WS5-C	0.0009	70														
WS6-A	0.0045	70	Shallow	35	0.400	U	Unpaved		0.1	Channel	380	0.005	Е	Earth-lined	0.16	5.1
WS6-B	0.0021	70					· ·									
WS6-C	0.0016	70														
WS6-D	0.0034	70	Channel	330	0.330	R	Riprap	0.05	1.9							
WS7-A	0.0033	70	Channel	375	0.330	R	Riprap	0.06	1.9							
WS7-B	0.0054	70														
WS8-A	0.0045	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	340	0.005	Е	Earth-lined	0.16	4.6
WS8-B	0.0019	70	Channel	135	0.330	R	Riprap	0.04	0.9							
WS8-C	0.0018	70														
WS9-A	0.0029	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	195	0.005	E	Earth-lined	0.14	2.9
WS9-B	0.0041	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	310	0.005	E	Earth-lined	0.16	4.2
WS9-C	0.0031	70	Channel	245	0.330	R	Riprap	0.05	1.4							
WS9-D	0.0018	70	Channel	245	0.330	R	Riprap	0.04	1.6							
WS9-E	0.0006	70														
WS9-F	0.0007	70														
WS10-A	0.0040	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	210	0.005	E	Earth-lined	0.16	2.8
WS10-B	0.0028	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	170	0.005	E	Earth-lined	0.14	2.5
WS10-C	0.0020	70	Channel	250	0.330	R	Riprap	0.04	1.7							
WS10-D	0.0018	70	Channel	250	0.330	R	Riprap	0.04	1.7							
WS11-A	0.0016	70	Shallow	45	0.400	U	Unpaved		0.1	Channel	145	0.005	E	Earth-lined	0.11	2.5
WS11-B	0.0022	70	Shallow	40	0.400	U	Unpaved		0.1	Channel	160	0.005	E	Earth-lined	0.13	2.5
WS11-C	0.0014	70	Channel	150	0.330	R	Riprap	0.03	1.2							
WS11-D	0.0007	70	Channel	90	0.330	R	Riprap	0.04	0.6							
WS12-A	0.0007	70	Shallow	45	0.400	U	Unpaved		0.1	Channel	150	0.005	E	Earth-lined	0.08	3.2
WS12-B	0.0009	70	Channel	155	0.330	R	Riprap	0.03	1.3							L
WS12-C	0.0011	70														<u> </u>
WS13-A	0.0009	70														
WS13-B	0.0019	70	Channel	140	0.330	R	Riprap	0.04	0.9							

Table B-3. Flow Results from HEC-HMS

Tri-State Generation and Transmission Association Nucla Station Ash Disposal Facility Project Number: 1657746 _____

Date:	10/13/16
By:	MBR
Chkd:	CPB
Apprvd:	MAY

HEC-HMS Basin Model:	Nucla
HEC-HMS Met. Model:	100-yr, 24-hr
HEC-HMS Control Specs:	48-hr, 1-min

Lhudno Lo nio	Drainage	Peak	Time of	Total
Hydrologic Element	Area (sg mile)	Discharge (cfs)	Peak	volume (ac-ft)
J-WS10-AB	0.007	2.5	02Jun2525, 01:06	0.2
J-WS10-CD	0.011	4	02Jun2525, 01:02	0.3
J-WS11-AB	0.004	1.4	02Jun2525, 01:06	0.1
J-WS11-CD	0.006	2.2	02Jun2525, 01:02 02 Jun2525, 00:59	0.2
J-WS9-CD	0.005	2.6	02Jun2525, 00:59	0.2
J-WS9-EF	0.013	4.9	02Jun2525, 01:02	0.4
J_WS1-AB	0.002	0.9	02Jun2525, 01:06	0.1
J_WS1-CD	0.003	1.1	02Jun2525, 01:03	0.1
J_WS2-CD	0.004	1.5	02Jun2525, 01:05	0.1
J_WS3-AB	0.004	1.4	02Jun2525, 01:06	0.1
J_WS3-CD	0.005	1.6	02Jun2525, 01:04	0.1
J_WS4B	0.009	3.2	02Jun2525, 01:08	0.3
J_WS4-AB	0.012	4.1	02Jun2525, 01:08	0.4
J_WS4-CD	0.014	4.6	02Jun2525, 01:07	0.4
J_WS6-AB	0.007	2.3	02Jun2525, 01:04	0.2
J_WS6-CD	0.012	4.6	02Jun2525, 01:01 02Jun2525, 01:02	0.4
J WS9-AB	0.007	2.5	02Jun2525, 01:07	0.2
RWS1	0.002	0.9	02Jun2525, 01:06	0.1
RWS10	0.007	2.5	02Jun2525, 01:06	0.2
RWS11 RWS12	0.004	1.4	02Jun2525, 01:06	0.1
RWS2	0.004	1.3	02Jun2525, 01:06	0.1
RWS3	0.004	1.4	02Jun2525, 01:06	0.1
RWS4	0.012	4.1	02Jun2525, 01:08	0.4
KWS4B RWS4C	0.006	2	02Jun2525, 01:09	0.2
RWS6	0.007	2.3	02Jun2525, 01:04	0.2
RWS8	0.005	1.6	02Jun2525, 01:07	0.1
RWS9	0.007	2.5	02Jun2525, 01:08	0.2
Sink-WS1	0.003	1.1	02Jun2525, 01:03	0.1
Sink-WS10	0.006	2.2	02Jun2525, 01:02	0.3
Sink-WS12	0.003	1.3	02Jun2525, 00:59	0.1
Sink-WS13	0.003	1.5	02Jun2525, 00:59	0.1
Sink-WS2	0.004	1.5	02Jun2525, 01:05	0.1
Sink-WS4	0.003	4.6	02Jun2525, 01:04	0.1
Sink-WS5	0.001	0.4	02Jun2525, 01:01	0
Sink-WS6	0.012	4.6	02Jun2525, 01:01	0.4
Sink-WS7	0.009	4.5	02Jun2525, 01:00	0.3
Sink-WS9	0.000	4.9	02Jun2525, 01:02	0.3
WS1-A	0.001	0.3	02Jun2525, 01:06	0
WS1-B	0.002	0.6	02Jun2525, 01:06	0.1
WS1-C	0.000	0.2	02Jun2525, 00:58	0
WS10-A	0.000	1.5	02Jun2525, 00.59	0.1
WS10-B	0.003	1.1	02Jun2525, 01:06	0.1
WS10-C	0.002	1.1	02Jun2525, 00:59	0.1
WS10-D	0.002	1	02Jun2525, 00:59	0.1
WS11-A WS11-B	0.002	0.8	02Jun2525, 01:06	0.1
WS11-C	0.001	0.8	02Jun2525, 00:59	0
WS11-D	0.001	0.4	02Jun2525, 00:58	0
WS12-A WS12-B	0.001	0.3	02Jun2525, 01:06	0
WS12-C	0.001	0.6	02Jun2525, 00:59	0
WS13-A	0.001	0.5	02Jun2525, 00:59	0
WS13-B	0.002	1	02Jun2525, 00:59	0.1
WS2-A WS2-B	0.002	0.6	02JUN2525, 01:06	0 1
WS2-C	0.000	0.2	02Jun2525, 00:59	0
WS2-D	0.000	0.1	02Jun2525, 00:58	0
WS3-A	0.002	0.6	02Jun2525, 01:06	0
wsэ-в WS3-С	0.002	0.8	02Jun2525, 01:06	0.1
WS3-D	0.000	0.2	02Jun2525, 00:58	0
WS4-A	0.003	0.9	02Jun2525, 01:06	0.1
WS4-B	0.003	1.2	02Jun2525, 01:07	0.1
WS4-0 WS4-D	0.001	0.3	02Jun2525, 00:59 02Jun2525, 00:58	0
WS5-A	0.006	2.1	02Jun2525, 01:08	0.2
WS5-B	0.001	0.4	02Jun2525, 01:01	0
WS5-C	0.001	0.4	02Jun2525, 01:01	0
WS6-B	0.005	1.0	02Jun2525, 01:08	0.1
WS6-C	0.002	0.9	02Jun2525, 00:59	0
WS6-D	0.003	1.8	02Jun2525, 01:00	0.1
WS7-A	0.003	1.8	02Jun2525, 00:59	0.1
WS8-A	0.005	∠.o 1.6	02Jun2525, 01:00	0.2
WS8-B	0.002	1	02Jun2525, 01:00	0.1
WS8-C	0.002	1	02Jun2525, 01:00	0.1
WS9-A	0.003	1.1	02Jun2525, 01:06	0.1
ws9-с	0.004	1.5	02Jun2525, 01:07	0.1
WS9-D	0.002	1	02Jun2525, 00:59	0.1
WS9-E	0.001	0.3	02Jun2525, 01:00	0
WS9-F	0.001	0.4	02Jun2525, 00:59	0

FIGURE

YYYY-MM-DD	2015-07-09
DESIGNED	MBR
PREPARED	MBR
REVIEWED	СРВ
APPROVED	MAY
DESIGNED PREPARED REVIEWED APPROVED	MBR MBR CPB MAY

ATTACHMENT B-1

	Workshee	t for Ter	race
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.030	
Channel Slope		0.00500	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		20.00	ft/ft (H:V)
Discharge		3.20	ft³/s
Results			
Normal Depth		0.46	ft
Flow Area		2.43	ft²
Wetted Perimeter		10.56	ft
Hydraulic Radius		0.23	ft
Top Width		10.46	ft
Critical Depth		0.35	ft
Critical Slope		0.02382	ft/ft
Velocity		1.32	ft/s
Velocity Head		0.03	ft
Specific Energy		0.49	ft
Froude Number		0.48	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.46	ft
Critical Depth		0.35	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.02382	ft/ft

Bentley Systems, Inc. Haestad Methods ScilletindieyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	1.10	ft³/s
Results		
Normal Depth	0.11	ft
Flow Area	0.25	ft²
Wetted Perimeter	3.37	ft
Hydraulic Radius	0.08	ft
Top Width	3.36	ft
Critical Depth	0.19	ft
Critical Slope	0.04243	ft/ft
Velocity	4.34	ft/s
Velocity Head	0.29	ft
Specific Energy	0.41	ft
Froude Number	2.79	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.11	ft
Critical Depth	0.19	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.04243	ft/ft

Bentley Systems, Inc. Haestad Methods ScilletindieyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	1.50	ft³/s
Results		
Normal Depth	0.13	ft
Flow Area	0.31	ft²
Wetted Perimeter	3.63	ft
Hydraulic Radius	0.09	ft
Top Width	3.62	ft
Critical Depth	0.22	ft
Critical Slope	0.04050	ft/ft
Velocity	4.77	ft/s
Velocity Head	0.35	ft
Specific Energy	0.48	ft
Froude Number	2.85	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.13	ft
Critical Depth	0.22	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.04050	ft/ft

Bentley Systems, Inc. Haestad Methods ScilletindieyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	1.60	ft³/s
Results		
Normal Depth	0.13	ft
Flow Area	0.33	ft²
Wetted Perimeter	3.69	ft
Hydraulic Radius	0.09	ft
Top Width	3.67	ft
Critical Depth	0.23	ft
Critical Slope	0.04010	ft/ft
Velocity	4.87	ft/s
Velocity Head	0.37	ft
Specific Energy	0.50	ft
Froude Number	2.87	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.13	ft
Critical Depth	0.23	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.04010	ft/ft

Bentley Systems, Inc. Haestad Methods ScilletindheyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
input Dutu		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	4.60	ft³/s
Results		
Normal Depth	0.22	ft
Flow Area	0.68	ft²
Wetted Perimeter	4.71	ft
Hydraulic Radius	0.15	ft
Top Width	4.68	ft
Critical Depth	0.39	ft
Critical Slope	0.03417	ft/ft
Velocity	6.74	ft/s
Velocity Head	0.70	ft
Specific Energy	0.92	ft
Froude Number	3.11	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.22	ft
Critical Depth	0.39	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.03417	ft/ft

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods SchetidleyCEInterMaster V8i (SELECTseries 1) [08.11.01.03]

Page 1 of 1

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	0.40	ft³/s
Results		
Normal Depth	0.07	ft
Flow Area	0.13	ft²
Wetted Perimeter	2.68	ft
Hydraulic Radius	0.05	ft
Top Width	2.67	ft
Critical Depth	0.11	ft
Critical Slope	0.04954	ft/ft
Velocity	3.18	ft/s
Velocity Head	0.16	ft
Specific Energy	0.23	ft
Froude Number	2.58	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Unstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.07	ft
Critical Depth	0.11	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.04954	ft/ft
·		

Bentley Systems, Inc. Haestad Methods Schedulore Scheduler V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	4.60	ft³/s
Results		
Normal Depth	0.22	ft
Flow Area	0.68	ft²
Wetted Perimeter	4.71	ft
Hydraulic Radius	0.15	ft
Top Width	4.68	ft
Critical Depth	0.39	ft
Critical Slope	0.03417	ft/ft
Velocity	6.74	ft/s
Velocity Head	0.70	ft
Specific Energy	0.92	ft
Froude Number	3.11	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.22	ft
Critical Depth	0.39	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.03417	ft/ft
-		

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods ScilletindheyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Page 1 of 1

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	4.50	ft³/s
Results		
Normal Depth	0.22	ft
Flow Area	0.67	ft ²
Wetted Perimeter	4.68	ft
Hydraulic Radius	0.14	ft
Top Width	4.66	ft
Critical Depth	0.38	ft
Critical Slope	0.03428	ft/ft
Velocity	6.69	ft/s
Velocity Head	0.70	ft
Specific Energy	0.91	ft
Froude Number	3.10	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.22	ft
Critical Depth	0.38	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.03428	ft/ft

Bentley Systems, Inc. Haestad Methods ScilletindieyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	3.00	ft³/s
Results		
Normal Depth	0.18	ft
Flow Area	0.51	ft²
Wetted Perimeter	4.26	ft
Hydraulic Radius	0.12	ft
Top Width	4.24	ft
Critical Depth	0.31	ft
Critical Slope	0.03645	ft/ft
Velocity	5.91	ft/s
Velocity Head	0.54	ft
Specific Energy	0.72	ft
Froude Number	3.01	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.18	ft
Critical Depth	0.31	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.03645	ft/ft

 Bentley Systems, Inc.
 Haestad Methods SchedidleyCElater/Master V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	4.90	ft³/s
Results		
Normal Depth	0.23	ft
Flow Area	0.71	ft²
Wetted Perimeter	4.78	ft
Hydraulic Radius	0.15	ft
Top Width	4.75	ft
Critical Depth	0.40	ft
Critical Slope	0.03384	ft/ft
Velocity	6.87	ft/s
Velocity Head	0.73	ft
Specific Energy	0.96	ft
Froude Number	3.12	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Unstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.23	ft
Critical Depth	0.40	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.03384	ft/ft
		- ·

Bentley Systems, Inc. Haestad Methods ScilletindieyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.33000	ft/ft
Constructed Depth	1.00	ft
Constructed Top Width	10.00	ft
Discharge	4.00	ft³/s
Results		
Normal Depth	0.21	ft
Flow Area	0.62	ft²
Wetted Perimeter	4.56	ft
Hydraulic Radius	0.14	ft
Top Width	4.53	ft
Critical Depth	0.36	ft
Critical Slope	0.03489	ft/ft
Velocity	6.45	ft/s
Velocity Head	0.65	ft
Specific Energy	0.85	ft
Froude Number	3.08	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.21	ft
Critical Depth	0.36	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.03489	ft/ft

Bentley Systems, Inc. Haestad Methods SchericheyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

Worksheet for DC WS11 **Project Description** Friction Method Manning Formula Solve For Normal Depth Input Data 0.035 **Roughness Coefficient** 0.33000 Channel Slope ft/ft 1.00 Constructed Depth ft 10.00 Constructed Top Width ft Discharge 2.20 ft³/s Results Normal Depth 0.16 ft Flow Area ft² 0.41 Wetted Perimeter 3.96 ft Hydraulic Radius 0.10 ft Top Width 3.95 ft Critical Depth 0.27 ft **Critical Slope** 0.03819 ft/ft Velocity 5.37 ft/s Velocity Head 0.45 ft Specific Energy 0.60 ft Froude Number 2.94 Flow Type Supercritical **GVF** Input Data Downstream Depth 0.00 ft 0.00 ft Length 0 Number Of Steps **GVF** Output Data 0.00 ft Upstream Depth **Profile Description Profile Headloss** 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.16 ft 0.27 Critical Depth ft 0.33000 **Channel Slope** ft/ft

Bentley Systems, Inc. Haestad Methods Solitationary CEntern Master V8i (SELECTseries 1) [08.11.01.03]

ft/ft

0.03819

7/8/2015 11:23:38 AM

Critical Slope

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Friction Method Solve ForManning Formula Normal DepthInput DataRoughness Coefficient0.035Channel Slope0.33000fuftConstructed Depth1.00t constructed Top Width10.00Discharge1.30t ftPow Area0.28Vetted Perimeter3.60t ftFlow Area0.8Vetted Perimeter3.60t ftTop Width0.08t ftOrdical Depth0.12t ftFlow Area0.8Vetted Perimeter3.60t ftTop Width0.21t ftCritical Depth0.21t ftCritical Slope0.04136t ftVetocity4.57Vetocity Head0.32t ftSpecific Energy0.45Froude Number2.82Foru TypeSupercitical
Solve For Normal Depth Input Data Roughness Coefficient 0.035 Channel Slope 0.33000 ft Constructed Depth 1.00 ft Constructed Top Width 10.00 Discharge 1.30 ft/s Results Normal Depth 0.12 ftow Area 0.28 Wetted Perimeter 3.50 ftoy Kith 0.08 triptoic Radius 0.08 ftor Kith 0.21 ftriptoic Radius 0.21 ftriptoic Radius 0.21 ftriptoic Radius 0.32 ftriptoic Radius 0.32 Velocity Head 0.32 ftrouce Number 2.82 Frouce Number 2.82
Input DataRoughness Coefficient0.035Channel Slope0.33000t/ft0.055Constructed Depth1.00t1.000Discharge1.30t*1.30Pesults0.12Normal Depth0.12Flow Area0.28Vetted Perimeter3.50Top Width0.08Top Width0.08Top Width0.21Tit1Critical Depth0.21Top Width0.49Top Width0.49Top Width0.21Top Width0.21Top Width0.21Top Width0.21Top Width0.21Top Width0.21Top Width0.21Top Width0.21Top Width0.32Top Width0.45Flow TypeSupercriticalFlow TypeSupercritical
Roughness Coefficient0.035Channel Slope0.33000ft/ftConstructed Depth1.00ftConstructed Top Width10.00ftDischarge1.30ft³/s0.12ft1.02ftFlow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82FtFlow TypeSupercritical
Channel Slope0.33000ft/ftConstructed Depth1.00ftConstructed Top Width10.00ftDischarge1.30ft/sResultsNormal Depth0.12ftFlow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width0.21ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFlow Arpe2.82FFlow TypeSupercritical
Constructed Depth1.00ftConstructed Top Width10.00ftDischarge1.30ft/sResultsNormal Depth0.12ftFlow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82ttFlow TypeSupercriticalSupercritical
Constructed Top Width10.00ftDischarge1.30ft //sResults0.12ftNormal Depth0.12ftFlow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Flow TypeSupercritical
Discharge1.30ft³/sResultsNormal Depth0.12ftFlow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Ftow TypeSupercriticalSupercritical
ResultsNormal Depth0.12ftFlow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFlow TypeSupercritical
Normal Depth0.12ftFlow Area0.28ft2Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFlow TypeSupercritical
Flow Area0.28ft²Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Ftow TypeSupercriticalSupercritical
Wetted Perimeter3.50ftHydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.822.82Flow TypeSupercritical
Hydraulic Radius0.08ftTop Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.822.82Flow TypeSupercritical
Top Width3.49ftCritical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Flow TypeSupercritical
Critical Depth0.21ftCritical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Flow TypeSupercritical
Critical Slope0.04136ft/ftVelocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Flow TypeSupercritical
Velocity4.57ft/sVelocity Head0.32ftSpecific Energy0.45ftFroude Number2.82Flow TypeSupercritical
Velocity Head 0.32 ft Specific Energy 0.45 ft Froude Number 2.82 2.82
Specific Energy 0.45 ft Froude Number 2.82 Flow Type Supercritical
Froude Number 2.82 Flow Type Supercritical
Flow Type Supercritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Downstream Velocity Infinity ft/s
Upstream Velocity Infinity ft/s
Normal Depth 0.12 ft
Critical Depth 0.21 ft
Channel Slope 0.33000 ft/ft
Critical Slope 0.04136 ft/ft

Bentley Systems, Inc. Haestad Methods SchleticheyCleickerMaster V8i (SELECTseries 1) [08.11.01.03]

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Developere Coofficient	0.025	
Channel Slope	0.035	ft/ft
	1.00	1711 ft
Constructed Top Width	10.00	ft
Discharge	1.50	ft ³ /s
Poquito		
Results		
Normal Depth	0.13	ft
Flow Area	0.31	ft ²
Wetted Perimeter	3.63	ft
Hydraulic Radius	0.09	ft
Top Width	3.62	ft
Critical Depth	0.22	ft um
Critical Slope	0.04050	ft/ft
Velocity	4.77	ft/s
Velocity Head	0.35	ft .
	0.48	ft
Froude Number	2.85	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.13	ft
Critical Depth	0.22	ft
Channel Slope	0.33000	ft/ft
Critical Slope	0.04050	ft/ft

Bentley Systems, Inc. Haestad Methods ScilletindieyCEinterMaster V8i (SELECTseries 1) [08.11.01.03]

ATTACHMENT B-2

Lag Time

(min)

12.2

11.2

4.5

3.9

4.0

5.2

11.5

10.6

3.7

3.5

11.5

10.6

3.9

2.9

10.8

10.9

4.3

3.2

12.6

11.6

11.1 6.0

4.0

3.4 5.1

4.3

12.8

6.2

4.8

3.7

12.4

4.6

4.5

3.7

3.6

4.2

3.3 11.1

11.1

10.7

3.9

3.2

11.3

11.0

4.0

4.1

6.3

Sub Pag	ain Aron		Loss	mbor			202	Transform	
SUD Das	sin Area		SCS Curve NL	Imper		-	303	Unit Hydrograph	т
Subbasin	Area (mi ²)	Subbasin	Abstraction (in)	Curve Number	Impervious (%)	s	Subbasin	Graph Type	I
VS9-B	0.0041	WS9-B	()	70	0	V	NS9-B	Standard	t
VS9-A	0.0029	WS9-A		70	0	v	NS9-A	Standard	$^+$
VS9-C	0.0031	WS9-C		70	0	v	NS9-C	Standard	t
VS9-D	0.0018	WS9-D		70	0	v	NS9-D	Standard	$^+$
NS9-F	0.0007	WS9-F		70	0	v	NS9-F	Standard	t
N/S9-F	0.0006	WS9-F		70	0	v	NS9-F	Standard	t
VS3-B	0.0023	WS3-B		70	0	v	NS3-B	Standard	t
WS3-A	0.0015	WS3-A		70	0	v	NS3-A	Standard	t
NS3-C	0.0004	WS3-C		70	0	v	NS3-C	Standard	t
NS3-D	0.0004	WS3-D		70	0	v	NS3-D	Standard	t
NS2-B	0.0020	WS2-B		70	0	v	NS2-B	Standard	t
NS2-A	0.0020	WS2-A		70	0	v	NS2-A	Standard	+
NS2-C	0.0004	WS2-C		70	0	v	NS2-C	Standard	t
NS2-0	0.0004	WS2-D		70	0	v	NS2-0	Standard	╀
NS1-B	0.0002	WS1-B		70	0	V	NS1-B	Standard	+
NG1-D	0.0017	W01-D		70	0	v v	NG1 A	Standard	+
NSI-A	0.0007	WS1-A		70	0	V	NS1-A	Standard	╀
NS1-D	0.0004	WS1-D		70	0	V		Stanuaru	╀
NSI-C	0.0003	WS1-C		70	0	V	NOT A	Standard	╀
VS5-A	0.0059	WS5-A		70	0	V	NS5-A	Standard	╀
VS4-B	0.0033	WS4-B		70	0	V	/VS4-B	Standard	╀
/S4-A	0.0025	WS4-A		70	0	V	NS4-A	Standard	Ļ
VS5-B	0.0009	WS5-B		70	0	V	NS5-B	Standard	Ļ
VS4-C	0.0005	WS4-C		70	0	V	NS4-C	Standard	_
VS4-D	0.0004	WS4-D		70	0	V	NS4-D	Standard	_
VS7-B	0.0054	WS7-B		70	0	V	NS7-B	Standard	
VS7-A	0.0033	WS7-A		70	0	V	NS7-A	Standard	
NS6-A	0.0045	WS6-A		70	0	V	NS6-A	Standard	
WS6-B	0.0021	WS6-B		70	0	V	NS6-B	Standard	
VS6-D	0.0034	WS6-D		70	0	V	NS6-D	Standard	
WS6-C	0.0016	WS6-C		70	0	V	NS6-C	Standard	
NS8-A	0.0045	WS8-A		70	0	V	NS8-A	Standard	
WS8-B	0.0019	WS8-B		70	0	V	NS8-B	Standard	
VS8-C	0.0018	WS8-C		70	0	V	NS8-C	Standard	
WS13-B	0.0019	WS13-B		70	0	V	NS13-B	Standard	ľ
WS13-A	0.0009	WS13-A		70	0	V	WS13-A	Standard	ľ
NS12-C	0.0011	WS12-C		70	0	ν	VS12-C	Standard	Γ
WS12-B	0.0009	WS12-B		70	0	V	VS12-B	Standard	Ι
NS12-A	0.0007	WS12-A		70	0	V	VS12-A	Standard	Γ
VS11-B	0.0022	WS11-B		70	0	V	VS11-B	Standard	T
NS11-A	0.0016	WS11-A		70	0	V	VS11-A	Standard	T
WS11-C	0.0014	WS11-C		70	0	V	WS11-C	Standard	t
NS11-D	0.0007	WS11-D		70	0	V	WS11-D	Standard	t
WS10-A	0.0040	WS10-A		70	0	v	VS10-A	Standard	t
VS10-B	0.0028	WS10-B		70	0	v	VS10-B	Standard	t
VS10-C	0.0020	WS10-C		70	0	v	VS10-C	Standard	t
/S10-D	0.0018	WS10-D		70	0	v	WS10-D	Standard	t
NS5-C	0.0009	WS5-C		70	0	v	NS5-C	Standard	t
			1						

Routing Kinematic Wave Channel									
Reach	Length (ft)	Slope (ft/ft)	Manning's n	subreaches	Invert (ft)	Shape	Diameter (ft)	Width (ft)	Side Slope (xH:1V)
RWS9	350	0.330	0.035	2		Trapezoid		10	3
RWS3	60	0.330	0.035	2		Trapezoid		10	3
RWS2	50	0.330	0.035	2		Trapezoid		10	3
RWS1	60	0.330	0.035	2		Trapezoid		10	3
RWS4B	230	0.005	0.025	2		Triangle			5
RWS4	60	0.330	0.035	2		Trapezoid		10	3
RWS4C	220	0.005	0.025	2		Triangle			5

Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

- Africa Asia Australasia Europe North America South America
- + 27 11 254 4800
- + 852 2562 3658
- + 61 3 8862 3500 + 356 21 42 30 20
- + 1 800 275 3281
- + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder

Engineering Earth's Development, Preserving Earth's Integrity

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

Golder Associates Inc. 44 Union Boulevard, Suite 300 Lakewood, CO 80228 USA Tel: (303) 980-0540 Fax: (303) 985-2080